This is a website for an H2020 project which concluded in 2019 and established the core elements of EOSC. The project's results now live further in www.eosc-portal.eu and www.egi.eu

Biological and Medical?page=1

CompBio Webinar

The main objective of this webinar is to show how the CompBioMed community can use the EOSC services for managing active research data (i.e. data transfer, storage, and sharing) and for preserving final research data (i.e. data archiving and publishing). In this webinar, we give a brief overview of the EUDAT Services and the data life cycle. We further demonstrate how these services operate and integrate with each other to meet the data management requirements of research communities and comply with the FAIR principles – which require the data to be properly documented, annotated, archived, published and accessible to the wider community.

Target audience: community researchers, data managers and the IT support people.

Presentation by Dr Narges Zarrabi (SURFsara, narges.zarrabi@surfsara.nl)

BioExcel Summer School on Biomolecular Simulations 2019

On this page, you can find the links to the HADDOCK and metadynamics (using Gromacs) tutorials given during the BioExcel Summer School on Biomolecular Simulations 2019 in Pula, Italy.

The first tutorial demonstrates the use of cross-linking data from mass spectrometry to guide protein-protein docking in HADDOCK.

The second tutorial illustrates how metadynamics can be used to sample conformations of a binding pocket; those are subsequently used for docking a ligand using HADDOCK. The conformational sampling approach is following the EDES approach described in the following publication:

DisVis web server Tutorial

DisVis is a software developed in our lab to visualise and quantify the information content of distance restraints between macromolecular complexes. It is open-source and available for download from our Github repository. To facilitate its use, we have developed a web portal for it.

This tutorial demonstrates the use of the DisVis web server. The server makes use of either local resources on our cluster, using the multi-core version of the software, or GPGPU-accelerated grid resources of the EGI to speed up the calculations. It only requires a web browser to work and benefits from the latest developments in the software based on a stable and tested workflow. Next to providing an automated workflow around DisVis, the web server also summarises the DisVis output highlighting relevant information and providing a first overview of the interaction space between the two molecules with images autogenerated in UCSF Chimera.

The case we will be investigating is the interaction between two proteins of the 26S proteasome of S. pombe, PRE5 (UniProtKB: O14250) and PUP2 (UniProtKB: Q9UT97). For this complex seven experimentally determined cross-links (4 ADH & 3 ZL) are available (Leitner et al., 2014). We added two false positive restraints - it is your task to try to identify these! For this, we use DisVis to try to filter out these false positive restraints while assessing the true interaction space between the two chains. We will then use the interaction analysis feature of DisVis that allows for a more complete analysis of the residues putatively involved in the interaction between the two molecules. To do so, we will extract all accessible residues of the two partners, and give the list of residues to DisVis using its interaction analysis feature. Finally, we will show how the restraints can be provided to HADDOCK in order to model the 3D interaction between the 2 partners.

HADDOCK2.4 basic protein-protein docking tutorial

This tutorial will demonstrate the use of HADDOCK for predicting the structure of a protein-protein complex from NMR chemical shift perturbation (CSP) data. Namely, we will dock two E. coli proteins involved in glucose transport: the glucose-specific enzyme IIA (E2A) and the histidine-containing phosphocarrier protein (HPr).

The structures in the free form have been determined using X-ray crystallography (E2A) (PDB ID 1F3G) and NMR spectroscopy (HPr) (PDB ID 1HDN). The structure of the native complex has also been determined with NMR (PDB ID 1GGR).

These NMR experiments have also provided us with an array of data on the interaction itself (chemical shift perturbations, intermolecular NOEs, residual dipolar couplings, and simulated diffusion anisotropy data), which will be useful for the docking. For this tutorial, we will only make use of inteface residues identified from NMR chemical shift perturbation data as described in Wang et al, EMBO J (2000).

How to apply bioinformatics to metallo-proteins

Table of Contents

• Sequence patterns and protein domains
• MetalPDB and related tools
• Structural Databases
• Structure refinement and protein dynamics

WeNMR suite for Structural Biology

This webpage provides tutorials, videos and lectures about WeNMR services including, DISVIS, POWERFIT, HADDOCK, GROMACS, AMPS-NMR, CS_ROSETTA, FNATEN, STOTON etc.

Pages